A rapid and accurate diagnosis of cardiomegaly and pleural effusion is of the utmost importance to reduce mortality and medical costs. Artificial Intelligence has shown promise in diagnosing medical conditions. With this study, we seek to evaluate how well Artificial Intelligence (AI) systems, developed my minoHealth AI Labs, will perform at diagnosing cardiomegaly and pleural effusion, using chest x-rays from Ghana, Vietnam and the USA, and how well AI systems will perform when compared with radiologists working in Ghana. The evaluation dataset used in this study contained 100 images randomly selected from three datasets. The Deep Learning models were further tested on a larger Ghanaian dataset containing five hundred and sixty one (561) samples. Two AI systems were then evaluated on the evaluation dataset, whilst we also gave the same chest x-ray images within the evaluation dataset to 4 radiologists, with 5 - 20 years experience, to diagnose independently. For cardiomegaly, minoHealth-ai systems scored Area under the Receiver operating characteristic Curve (AUC-ROC) of 0.9 and 0.97 while the AUC-ROC of individual radiologists ranged from 0.77 to 0.87. For pleural effusion, the minoHealth-ai systems scored 0.97 and 0.91 whereas individual radiologists scored between 0.75 and 0.86. On both conditions, the best performing AI model outperforms the best performing radiologist by about 10%. We also evaluate the specificity, sensitivity, negative predictive value (NPV), and positive predictive value (PPV) between the minoHealth-ai systems and radiologists.
translated by 谷歌翻译
Couples generally manage chronic diseases together and the management takes an emotional toll on both patients and their romantic partners. Consequently, recognizing the emotions of each partner in daily life could provide an insight into their emotional well-being in chronic disease management. The emotions of partners are currently inferred in the lab and daily life using self-reports which are not practical for continuous emotion assessment or observer reports which are manual, time-intensive, and costly. Currently, there exists no comprehensive overview of works on emotion recognition among couples. Furthermore, approaches for emotion recognition among couples have (1) focused on English-speaking couples in the U.S., (2) used data collected from the lab, and (3) performed recognition using observer ratings rather than partner's self-reported / subjective emotions. In this body of work contained in this thesis (8 papers - 5 published and 3 currently under review in various journals), we fill the current literature gap on couples' emotion recognition, develop emotion recognition systems using 161 hours of data from a total of 1,051 individuals, and make contributions towards taking couples' emotion recognition from the lab which is the status quo, to daily life. This thesis contributes toward building automated emotion recognition systems that would eventually enable partners to monitor their emotions in daily life and enable the delivery of interventions to improve their emotional well-being.
translated by 谷歌翻译
夫妻通常在一起管理慢性疾病,管理层对患者及其浪漫伴侣造成了情感上的伤害。因此,认识到日常生活中每个伴侣的情绪可以提供对他们在慢性疾病管理中的情感健康的见解。当前,评估每个伴侣的情绪的过程是手动,时间密集和昂贵的。尽管夫妻之间存在着关于情感识别的作品,但这些作品都没有使用夫妻在日常生活中的互动中收集的数据。在这项工作中,我们收集了85小时(1,021个5分钟样本)现实世界多模式智能手表传感器数据(语音,心率,加速度计和陀螺仪)和自我报告的情绪数据(n = 612)(13个伙伴)(13)夫妻)在日常生活中管理2型糖尿病。我们提取了生理,运动,声学和语言特征,以及训练有素的机器学习模型(支持向量机和随机森林),以识别每个伴侣的自我报告的情绪(价和唤醒)。我们最佳模型的结果比偶然的结果更好,唤醒和价值分别为63.8%和78.1%。这项工作有助于建立自动情绪识别系统,最终使伙伴能够监视他们在日常生活中的情绪,并能够提供干预措施以改善其情感幸福感。
translated by 谷歌翻译
培训和评估机器学习模型的迭代是提高其性能的重要过程。但是,尽管可教学的接口使盲人用户能够在其独特的环境中拍摄的照片训练和测试对象识别器,但训练迭代和评估步骤的可访问性很少受到关注。迭代假设训练照片的目视检查,对于盲人用户来说是无法访问的。我们通过MyCam探索了这一挑战,Mycam是一个移动应用程序,该应用程序合并了自动估计的描述符,以在用户培训集中对照片进行非视觉访问。我们探索盲人参与者(n = 12)如何通过他们的家中的评估研究与mycam和描述符相互作用。我们证明,实时照片级描述符使盲人用户能够用裁剪的对象减少照片,并且参与者可以通过迭代并访问其训练集的质量来增加更多的变化。此外,参与者发现该应用程序易于使用,表明他们可以有效地训练它,并且描述符很有用。但是,主观反应并未反映在其模型的性能中,部分原因是训练和混乱背景的变化很小。
translated by 谷歌翻译
非洲的学生与教师比例很高,这限制了学生与老师的访问。因此,学生努力获取问题的答案。在这项工作中,我们扩展了我们以前的AI助教助理的Kwame,将其改编成科学教育,并将其部署为Web应用程序。科学的夸梅(Kwame)根据西非高级中学证书考试(WASSCE)的综合科学主题回答学生的问题。 Kwame for Science是一个基于句子的问题,提问的Web应用程序,显示3段作为答案以及回答科学问题的信心分数。此外,除3段外,它还显示了前5个相关的考试问题及其答案。我们对2.5周的现实部署对Kwame科学的初步评估显示,在11个国家 /地区的190个用户中,前3个准确性为87.5%(n = 56)。夸梅的科学将使在非洲的数百万人中提供可扩展,成本效益和优质的远程教育。
translated by 谷歌翻译
由于知识图(kgs)的不完整,旨在预测kgs中未观察到的关系的零照片链接预测(ZSLP)引起了研究人员的最新兴趣。一个常见的解决方案是将关系的文本特征(例如表面名称或文本描述)用作辅助信息,以弥合所见关系和看不见的关系之间的差距。当前方法学习文本中每个单词令牌的嵌入。这些方法缺乏稳健性,因为它们遭受了量不足(OOV)的问题。同时,建立在字符n-grams上的模型具有为OOV单词生成表达式表示的能力。因此,在本文中,我们提出了一个为零链接预测(HNZSLP)的层次N-gram框架,该框架考虑了ZSLP的关系n-gram之间的依赖项。我们的方法通过首先在表面名称上构造层次n-gram图来进行起作用,以模拟导致表面名称的N-gram的组织结构。然后,将基于变压器的革兰amtransformer呈现,以建模层次n-gram图,以构建ZSLP的关系嵌入。实验结果表明,提出的HNZSLP在两个ZSLP数据集上实现了最先进的性能。
translated by 谷歌翻译
In this paper, we propose SceNDD: a scenario-based naturalistic driving dataset that is built upon data collected from an instrumented vehicle in downtown Indianapolis. The data collection was completed in 68 driving sessions with different drivers, where each session lasted about 20--40 minutes. The main goal of creating this dataset is to provide the research community with real driving scenarios that have diverse trajectories and driving behaviors. The dataset contains ego-vehicle's waypoints, velocity, yaw angle, as well as non-ego actor's waypoints, velocity, yaw angle, entry-time, and exit-time. Certain flexibility is provided to users so that actors, sensors, lanes, roads, and obstacles can be added to the existing scenarios. We used a Joint Probabilistic Data Association (JPDA) tracker to detect non-ego vehicles on the road. We present some preliminary results of the proposed dataset and a few applications associated with it. The complete dataset is expected to be released by early 2023.
translated by 谷歌翻译
Quadcopter trajectory tracking control has been extensively investigated and implemented in the past. Available controls mostly use the Euler angle standards to describe the quadcopters rotational kinematics and dynamics. As a result, the same rotation can be translated into different roll, pitch, and yaw angles because there are multiple Euler angle standards for characterization of rotation in a 3-dimensional motion space. Additionally, it is computationally expensive to convert a quadcopters orientation to the associated roll, pitch, and yaw angles, which may make it difficult to track quick and aggressive trajectories. To address these issues, this paper will develop a flatness-based trajectory tracking control without using Euler angles. We assess and test the proposed controls performance in the Gazebo simulation environment and contrast its functionality with the existing Mellinger controller, which has been widely adopted by the robotics and unmanned aerial system (UAS) communities.
translated by 谷歌翻译
The Modboat is a low-cost, underactuated, modular robot capable of surface swimming, docking to other modules, and undocking from them using only a single motor and two passive flippers. Undocking is achieved by causing intentional self-collision between the tails of neighboring modules in certain configurations; this becomes a challenge, however, when collective swimming as one connected component is desirable. Prior work has developed controllers that turn arbitrary configurations of docked Modboats into steerable vehicles, but they cannot counteract lateral forces and disturbances. In this work we present a centralized control strategy to create holonomic vehicles out of arbitrary configurations of docked Modboats using an iterative potential-field based search. We experimentally demonstrate that our controller performs well and can control surge and sway velocities and yaw angle simultaneously.
translated by 谷歌翻译
Wind turbine wake modelling is of crucial importance to accurate resource assessment, to layout optimisation, and to the operational control of wind farms. This work proposes a surrogate model for the representation of wind turbine wakes based on a state-of-the-art graph representation learning method termed a graph neural network. The proposed end-to-end deep learning model operates directly on unstructured meshes and has been validated against high-fidelity data, demonstrating its ability to rapidly make accurate 3D flow field predictions for various inlet conditions and turbine yaw angles. The specific graph neural network model employed here is shown to generalise well to unseen data and is less sensitive to over-smoothing compared to common graph neural networks. A case study based upon a real world wind farm further demonstrates the capability of the proposed approach to predict farm scale power generation. Moreover, the proposed graph neural network framework is flexible and highly generic and as formulated here can be applied to any steady state computational fluid dynamics simulations on unstructured meshes.
translated by 谷歌翻译